skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagpal, Radhika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robot swarms offer significant potential for inspecting di- verse infrastructure, ranging from bridges to space stations. However, effective inspection requires accurate robot localization, which demands substantial computational resources and limits productivity. Inspired by biological systems, we introduce a novel cooperative localization mech- anism that minimizes collective computation expenditure through self- organized sacrifice. Here, a few agents bear the computational burden of localization; through local interactions, they improve the inspection pro- ductivity of the swarm. Our approach adaptively maximizes inspection productivity for unconstrained trajectories in dynamic interaction and environmental settings. We demonstrate the optimality and robustness using mean-field analytical models, multi-agent simulations, and hard- ware experiments with metal climbing robots inspecting a 3D cylinder. 
    more » « less
  2. We present a distributed Bayesian algorithm for robot swarms to classify a spatially distributed feature of an environment. This type of “go/no-go” decision appears in applications where a group of robots must collectively choose whether to take action, such as determining if a farm field should be treated for pests. Previous bio-inspired approaches to decentralized decision-making in robotics lack a statistical foundation, while decentralized Bayesian algorithms typically require a strongly connected network of robots. In contrast,our algorithm allows simple, sparsely distributed robots to quickly reach accurate decisions about a binary feature of their environment. We investigate the speed vs. accuracy tradeoff in decision-making by varying the algorithm’s parameters.We show that making fewer, less-correlated observations can improve decision-making accuracy, and that a well-chosen combination of prior and decision threshold allows for fast decisions with a small accuracy cost. Both speed and accuracy also improved with the addition of bio-inspired positive feed-back. This algorithm is also adaptable to the difficulty of the environment. Compared to a fixed-time benchmark algorithm with accuracy guarantees, our Bayesian approach resulted in equally accurate decisions, while adapting its decision time to the difficulty of the environment. 
    more » « less